OPTIMISATION OF PARTICLE FILTERS USING SIMULTANEOUS PERTURBATION STOCHASTIC APPROXIMATION tBao
نویسنده
چکیده
This paper addresses the optimisation of particle filtering methods aka Sequential Monte Carlo (SMC) methods using stochastic approximation. First, the SMC algorithm is parameterised smoothly by a parameter. Second, optimisation of an average cost function is performed using Simultaneous Perturbation Stochastic Approximation (SPSA). Simulations demonstrate the efficiency of our algorithm.
منابع مشابه
Optimisation of particle filters using simultaneous perturbation stochastic approximation
This paper addresses the optimisation of particle filtering methods aka Sequential Monte Carlo (SMC) methods using stochastic approximation. First, the SMC algorithm is parameterised smoothly by a parameter. Second, optimisation of an average cost function is performed using Simultaneous Perturbation Stochastic Approximation (SPSA). Simulations demonstrate the efficiency of our algorithm.
متن کاملStochastic optimisation with inequality constraints using simultaneous perturbations and penalty functions
We present a stochastic approximation algorithm based on penalty function method and a simultaneous perturbation gradient estimate for solving stochastic optimisation problems with general inequality constraints. We present a general convergence result that applies to a class of penalty functions including the quadratic penalty function, the augmented Lagrangian, and the absolute penalty functi...
متن کاملRSPSA: Enhanced Parameter Optimisation in Games
Most game programs have a large number of parameters that are crucial for their performance. While tuning these parameters by hand is rather difficult, successful applications of automatic optimisation algorithms in game programs are known only for parameters that belong to certain components (e.g. evaluation-function parameters). The SPSA (Simultaneous Perturbation Stochastic Approximation) al...
متن کاملOptimal design of arch dams subjected to earthquake loading by a combination of simultaneous perturbation stochastic approximation and particle swarm algorithms
An efficient optimization procedure is introduced to find the optimal shapes of arch dams considering fluid–structure interaction subject to earthquake loading. The optimization is performed by a combination of simultaneous perturbation stochastic approximation (SPSA) and particle swarm optimization (PSO) algorithms. This serial integration of the two singlemethods is termed as SPSA–PSO. The op...
متن کاملDynamic Data Clustering Using Stochastic Approximation Driven Multi-Dimensional Particle Swarm Optimization
With an ever-growing attention Particle Swarm Optimization (PSO) has found many application areas for many challenging optimization problems. It is, however, a known fact that PSO has a severe drawback in the update of its global best (gbest) particle, which has a crucial role of guiding the rest of the swarm. In this paper, we propose two efficient solutions to remedy this problem using a stoc...
متن کامل